An algebraic characterization of B-splines

نویسندگان

چکیده

B-splines of order k can be viewed as a mapping N taking (k+1)-tuple increasing real numbers a0<⋯<ak and giving result certain piecewise polynomial function. Looking at this whole, basic properties B-spline functions imply that it has the following algebraic properties: (1) N(a0,…,ak) local support contained in interval [a0,ak]; (2) allows refinement, i.e. for every a∈∪j=0k−1(aj,aj+1) we have if (α0,…,αk+1) is rearrangement points {a0,…,ak,a}, ‘old’ function linear combination ‘new’ N(α0,…,αk) N(α1,…,αk+1); (3) translation dilation invariant. It easy to see derivatives satisfy (1)–(3) well. Let F (k+1)-tuples some generalized In paper show under additional mild condition on size supports F(a0,…,ak) relative [a0,ak], are already sufficient deduce non-zero multiple (some derivative of) However, somewhat surprisingly, explicitly give examples choices satisfying but not form.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal properties of the uniform algebraic trigonometric B-splines

In this paper, we construct a matrix, which transforms a generalized C-Bézier basis into a generalized uniform algebraic-trigonometric B-spline (C-B-spline or UAT B-spline) basis. We also show that it is a totally positive matrix and give a normalized B-basis of the generalized UAT B-splines.  2005 Elsevier B.V. All rights reserved.

متن کامل

On Non-Uniform Algebraic-Hyperbolic (NUAH) B-Splines

The recurrence algorithm is given for the calculation of NUAH B-splines in the space Sn+1 = span{sinh t, cosh t, t , · · · , t, t, 1} (n ≥ 3). The case of NUAH B-spline bases of low order with multiple knot sequences is studied. The limiting cases of UAH Bsplines are recovered when shape parameters α′s → 0and + ∞. Then the corresponding NUAH B-spline curve is defined and its main properties suc...

متن کامل

The Combinatorics of Algebraic Splines

We characterize the dimension of fixed degree functional and implicit algebraic splines in three dimensional (x,y,z) space. For a a given planar triangulation T both functional and implicit algebraic splines interpolate specified Zi values at the vertices Vi = (XitY;) of T. For a three dimensional triangulation 57 the implicit algebraic splines interpolate the boundary vertices Vj = (Xj, Yj I Z...

متن کامل

Energy Formulations of Algebraic Splines

A-splines are implicit real algebraic curves in Bernstein-B ezier (BB) form that are smooth. We develop a spectrum of physical A-spline curve models using various energy formulations based on the theory of elasticity. Our bending and stretching energy formulations yield interactive physically based modeling with A-splines while preserving the advantages of free-form modeling of complex shapes. ...

متن کامل

Eigenvalues of Scaling Operators and a Characterization of B-splines

A finitely supported sequence a that sums to 2 defines a scaling operator Taf = ∑ k∈Z a(k)f(2 ·−k) on functions f, a transition operator Sav = ∑ k∈Z a(k)(2 ·−k) on sequences v, and a unique compactly supported scaling function φ that satisfies φ = Taφ normalized with φ̂(0) = 1. It is shown that the eigenvalues of Ta on the space of compactly supported square-integrable functions are a subset of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2023.127063